
Lecture Notes on Neural Networks: Part 2C, Encoding the Hard Column, Determine What to
Keep, Create the Combined Training Set

Nick V. Flor, nickflor@unm.edu

In the previous tutorial, we imported train.csv into R, then encoded the “easy” columns. Next, we
encode the hard column, which means to convert the tweets into numbers.

Step 1. Encode the Tweet Column into a Document Term Matrix Data Frame

Explanation:

I did not go through the steps in detail, because you’ve already created a Document Term Matrix in a
previous homework on clustering. The document term matrix denotes, for each tweet, whether or
not that tweet contains a word in the entire spike corpus.

The only new statement is dft=as.data.frame(mat). This converts a matrix (mat) into a data frame
(dft).

Our ultimate goal is to combine part of the dft data.frame with the train1 data.frame. I say “part of”
because there are 3466 columns in dft. So we need to trim down the columns.

Bottom Line: We have a data frame containing a document term matrix, which denotes which tweets
contain the various words in the spike corpus.

Step 2. Determine What to Keep — Do a Social Network Analysis to Help Trim Down the
Document Term Matrix Columns

Explanation:

I won’t walk you through this step because it’s just doing a social network analysis (SNA) on the spike
(similar to an earlier homework) — calculating metrics, grouping by cluster, then sorting by
Betweenness Centrality.

Aside. An easier alternative to help trim down the columns, is to calculate word frequencies and only
use the top words. The hypothesis is that high frequency words are associated with viral tweets.
However, I decided to do a social networking analysis, with the hypothesis that viral tweets are
associated with mentioning popular people. A better alternative would be to combine both high-
frequency words AND popular people. But we only have time for one.

Note: the top 20 influencers are: MagiciansSYFY, SPN_Sarita, BrittanyCurran, serathegamble,
SummerBishil1, CyberDreamer, candiscayne, SYFY, ForeverRevo, GeekyDiorGirl, JadeTailor,
OliviaDudley, alonsomyers, AdminPopCultRev, corbin_kaur, HannahLevien, StellaMaeve14,
ArjunGuptaBK.

I checked the document term matrix to see if these users were mentioned (by typing dft$username;
username in lower case). Of these 20, only 10 appeared in the document term matrix: magicianssyfy,
brittanycurran, serathegamble, summerbishil1, candiscayne, syfy, jadetailor, oliviadudley,
stellamaeve14, arjunguptabk.

Bottom line: We can reduce the 3466 word columns down to 10 or fewer.

Step 3. Copy the Names from the Document Term Matrix into a Data.Frame

Explanation:
The original document term matrix (dtm) had 3466 columns, we have reduced this to 10 columns.

(continued)

Step 4. Combine Data.Frames (train1, dfi) into the Final Training Set (trainfin)

Explanation:

We use a data.frame to combine the Excel data frame (train1) with the social network influencer data
frame (dfi). The final data frame is named trainfin.

(continued)

Step 5. Load the NeuralNet Package

Explanation:

The package is neuralnet. Don’t forget to use install.packages the first time, in order to load the
package.

(continued)

Step 6. Train the NeuralNet

Explanation:
The key command is —

model=neuralnet(rt~verified+listed+magicianssyfy+brittanycurran+
serathegamble+summerbishil1+candiscayne+syfy+jadetailor+oliviadudley+
stellamaeve14+arjunguptabk,trainfin, hidden=5)

— the Syntax is similar to a regression. The only difference is that you have to specify the number

of hidden units (hidden).

(continued)

Step 7. Plot The Model
• Type plot(model)

Explanation:

Use the plot command to draw the model.

(continued)

Step 8. Test the Model With New Input

Explanation:

Regressions in R use the predict function, neural networks in R use compute. The syntax is the same.
$net.result is the output.

